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Abstract 

This work deals with gravity currents moving on upsloping 
beds investigated by both experimental and numerical 
simulations. Laboratory experiments were realized by lock 
exchange release technique in a Perspex tank of rectangular 
cross section, divided into two reservoirs by a vertical 
removable gate, one filled with colored salty water and the 
other one filled with clear fresh water with lower density. 
When the gate is removed, the dense fluid collapses 
developing a gravity current under the surrounding fluid. 
Different values of the bed’s slope θ were tested. Each 
experiment was acquired by a CCD camera and an image 
analysis technique, based on the threshold method, was 
applied to measure the space-time evolution of the current’s 
profile and the time history of the front’s position.  
Numerical simulations were carried out using a one-
dimensional two-layer shallow water model, which 
accounts for both the oscillation of the free surface and the 
mixing between the two fluids. Two different relations are 
used to model the entrainment: a modified form of Ellison 
& Turner’s formula (1959)[5] and a relation suggested by 
Cenedese & Adduce (2010)[2]. A comparison between 
numerical and experimental results was performed. 
Numerical simulations show near the lock an area in which 
the gravity current’s velocity is negative, i.e. the dense fluid 
is moving downslope. Numerical simulations performed 
with Ellison & Turner’s formula are in good agreement 
with the experimental results. 

Introduction 

Gravity currents are caused by a density gradient between 
two fluids and occur both in natural and in industrial flows. 
The driving force can be due to a dissolved solute (i.e. salt 
in the sea), to a difference of temperature, or to the presence 
of suspended sediments. Examples of gravity currents are 
given by avalanches, turbidity currents, pyroclastic flows, 
lava flows, sea-breeze and salt wedge propagation 
(Simpson, 1997[13]).  
Many studies investigated gravity currents by both 
laboratory experiments and numerical simulations and most 
of the models used in the literature are based on the 

shallow-water theory (Rottman & Simpson 1983[11]; Shin et 
al. 2004[12]; La Rocca et al. 2008[10]; Adduce et al. 2010[2]). 
Rottman & Simpson (1983)[11] studied gravity currents by 
laboratory experiments and compared measurements with 
numerical solutions of the shallow water equations for a 
two-layer fluid bounded at top and bottom by rigid 
horizontal planes and at one end by a vertical wall, 
neglecting mixing effects between the two fluids. Benjamin 
(1968)[1] developed a theory for the propagation of a 
steadily advancing current and focused the attention on the 
importance of dissipation in gravity current dynamics. Shin 
et al. (2004)[12] provided a theory based on the energy-
conserving flow that is in agreement with their 
experiments, and showed that dissipation is not important at 
high Reynolds number. La Rocca et al. (2008)[10] studied 
the dynamics of three-dimensional gravity currents on 
smooth and rough beds by lock exchange experiments and 
numerical simulations, using a shallow water model 
considering two layers of immiscible liquids. Adduce et al. 
(2010)[2] performed lock exchange experiments on a flat 
bed and compared experimental results with numerical 
simulations obtained by a two-layer, shallow water model 
for miscible fluids. 
The aim of this paper is the investigation of gravity currents 
moving on upsloping beds by both laboratory experiments 
and numerical simulations. Four different bed’s slopes were 
investigated. 
Experimental gravity currents were realized in a Perspex 
channel of a rectangular cross-section, divided in two 
portions by a vertical sliding gate, as shown in Figure 1. 
The lock was filled with the heavier fluid, realized by a 
solution of tap water and salt, while the other volume was 
filled with the lighter fluid, i.e. fresh water. The experiment 
starts when the gate is removed, the salty water flows under 
the lighter fluid and the gravity current develops. The 
experiment stops when the gravity current reaches the right 
end wall of the channel. Such experimental technique is 
called “lock exchange release”. 
Numerical simulations were performed by 1D, two-layer, 
shallow water model. The mathematical model takes into 
account both the oscillation of the free surface and the 
mixing (i.e. entrainment) between the two fluids. 



Entrainment was modeled following two different relations 
and numerical results obtained were compared with 
experimental results. The first relation used is the one 
suggested by Cenedese & Adduce (2010) [2] and the second 
one is a modified form of Ellison & Turner’s (1959)[5] 
formula. Numerical simulations performed by using Ellison 
& Turner’s formula are in good agreement with the 
experimental results, suggesting that the shallow water 
model is a valid instrument to reproduce gravity currents 
moving on beds with different slopes. 

Experimental apparatus 

The experiments were conducted at the Hydraulics 
Laboratory of the University of Rome “Roma Tre”, in a 
Perspex tank of rectangular cross-section, 3.0 m long, 0.3 m 
deep and 0.2 wide. The tank was divided in two parts by a 
vertical sliding gate placed at the distance x0 from the 
beginning of the channel, as shown in Figure 1. The left 
part of the tank was filled with salty water with initial 
density ρ01>ρ2, while the right part was filled with tap 
water. The depth of the two fluids was h0. Density 
measurements were performed by a pycnometer and a small 
quantity of dye was dissolved into the salty water to allow 
the visualization of the gravity current during the 
experiments.  
Each experiment was recorded by a CCD camera, with a 
frequency of 25 Hz, and an image analysis technique, based 
on a threshold method,  was applied to measure the space-
time evolution of the gravity current’s profile. The 
conversion factor pixel/cm was obtained using a rule placed 
along both the horizontal and vertical walls of the channel.  
Four experiments were performed keeping constant 

ρ1≅1060 kg/m3, ρ2=1000 kg/m3, h0=0.15 m, x0=0.1 m and 
varying the bed’s sloping angle θ. The values of bed’s 
sloping angles investigated were: +0.00°, -1.14°, -1.39° and 
-1.52°. θ= -1.39° (i.e. Run 3) is the critical bed’s sloping 

angle for ρ1≅1060 kg/m3. In this work the critical value of 
the bed’s sloping angle is defined as the angle for which the 
gravity current reaches the end of the tank with a front’s 
speed close to zero. For Run 2 the gravity current reaches 
the end wall with a front’s speed higher than zero (i.e. 
subcritical slope), while for Run 4 the current doesn’t reach 
at all the end of the tank (i.e. supercritical slope). Table 1 
shows the bed’s angles for each experiment. 

Table 1: Experimental parameters for all runs 

RUN ρ01 [kg/m3] θ [°]  

1 1059.56 +0.00 
2 1059.72 -1.14 
3 1059.75 -1.39 
4 1059.72 -1.52 

 

 

Figure 1: Sketch of the tank used to perform 2D lock 
release gravity currents. 

Mathematical model 

A two-layer, 1D, shallow-water model was used to 
simulate gravity currents. Gravity currents frequently 
develop along the longitudinal direction, so that the ratio 
between the depth and the length of the current is small 
enough to allow the application of the shallow water theory. 
Several authors investigated gravity currents by shallow 

water equations (Rottman & Simspon (1983)[11], Sparks et 

al. (1993)[14], Hogg et al. (1999)[8]).  

These authors assumed a steady free surface, while in 
the present work this hypothesis has been removed in order 
to have a more realistic solution, modeling the space-time 
evolution of the free surface. The mathematical model takes 
also into account the mixing between the two fluids. The 
entrainment at the interface, due to a mass transport from 
the lighter fluid to the heavier one, causes a decrease of the 
density of the gravity current. The entrainment between the 
two fluids was modeled by both a modified Ellison & 

Turner’s formula (1959)[5] and the Cenedese & Adduce’s 

formula (2010)[2]. Figure 2 shows the frame of reference 

used in the model. 
A monodimensional gravity current moving on a bed of 

a slope θ is considered. For the mathematical model, 
negative values of θ are referred to upsloping beds. The 
heavier current of height h1 and density ρ1 flows below the 
lighter one of height h2 and density ρ2. Applying both 
principle of mass conservation and projecting along the axis 
x the balance of momentum equations, the following 
system of hyperbolic partial differential equations is 
obtained: 
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where the unknown quantities h1, h2, V1 and V2 are the 
depth and the velocity of the lower and the upper layer, 

respectively, Ve is the entrainment velocity, τ1b and τ2b are 
the stress terms between the two fluids and the bottom 
(these terms include both bed’s stress and lateral walls 

stress), and τ12 is the stress at the interface between the two 
fluids. The bottom stress is modeled by Darcy-Weisbach’s 

formula (1858[4], 1845[15]), like in La Rocca et al. 

(2008)[10]: 
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where B is cross section’s width of tank; λi, the friction 

factor, was defined by Colebrook (1939)[3] for the 

transition between laminar and turbulent flow: 
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where λi∞, Rei and ε/hi are the friction factor for turbulent 
rough flows, the Reynolds number and the relative 

roughness of the i th layer, respectively. λi∞ corresponds to 
turbulent flow; the latter parameter and Rei are defined as: 
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Equation (3) shows that the term ( )εiih Re8  adapts the 

friction factor for turbulent rough flows to turbulent 
transition flows. In the performed experiments turbulent 
transition flows develop. 
The stress at the interface between the two fluids is defined 
as: 
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where λ12 is the friction factor at the interface between two 
different fluids. The value λ12 = 0.24 was found as the 
optimum value and it was used in previous works. In this 

study this parameter is expressed as a function of the 
gravity current’s Reynolds number given by (5): 
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where λ”< λ’ and Re0 is a particular value of Reynolds 
number; all these parameters were calibrated and the 

following values were obtained: λ’= 0.24, λ”= 0.19, Re0= 
=6000. 
In order to model Ve, many authors studied mixing effect at 
the interface (Hacker et al. (1996)[6], Holford & Linden 
(1999)[9], Hallworth et al. (1996)[7]). In this study, initially, 
a modified Ellison & Turner’s formula (1959)[5] was used 
to model the entrainment. Ve is given as a function of 
Froude number of the gravity current, defined as: 
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Because Ellison & Turner’s formula was obtained by an 
experimental apparatus different from the lock exchange 
experiment, in this paper some modifications to Ellison & 
Turner’s relation were adopted. So the relation used to 
model the entrainment parameter is: 
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where k is a dimensionless coefficient. The entrainment 
velocity increases as k increases. The calibration value 
k=0.95 supplies a correct evaluation of the gravity current’s 
depth and a good simulation of the front’s speed of the 
gravity current.  
The results provided by the latter entrainment modeling 
were compared to the ones derived from the Cenedese & 
Adduce entrainment formulation. These authors express Ve 
as a function of both Froude and Reynolds number of the 
gravity current. So the relation to model the entrainment 
parameter is: 
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The dimensionless coefficients derived from the calibration 
carried out by Cenedese & Adduce have the following 

values: Min=4⋅10-5, A=3.4⋅10-3, Fr0=0.51, α=7.18, Max=1, 
B=243.52 and β=0.5. Such parameters are based on 
experimental data and oceanic measurements from 



Mediterranean Sea, Denmark Strait, Faroe Islands, Baltic 
Sea and Lake Ogawara.  
The mathematical model was numerically solved by an 
explicit Mac-Cormack’s finite difference scheme by 
predictor-corrector scheme. By this way a greater scheme’s 
stability is assured by using modest computing resources. 
 

 

Figure 2: Frame of reference used in the mathematical 
model. 

Results and discussion 

Figure 3a-d shows a comparison between experimental 
front’s position and numerical prediction for all the runs: 
CA indicates the numerical simulations performed with 
Equation (10) suggested by Cenedese & Adduce (2010)[2] 
to model the entrainment; ETm stands for the simulations 
carried out by using the modified Ellison & Turner’s 
formula given by Equation (9) (i.e. k=0.95); ETzero 
represents the simulation obtained neglecting the 
entrainment phenomena (i.e. k=0.0). The space scale is the 
gate position x0, while the time scale t0 is defined as: 
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From Figure 3a-d a good agreement between experimental 
data and the numerical front’s position predicted using 
Ellison & Turner’s formula (i.e. ETm) to model the 
entrainment can be observed. Regarding the runs performed 
on upsloping beds, the simulation performed without taking 
into account the entrainment term (ETzero) agrees with 
laboratory data only for the first stage of gravity current’s 
development. The curve resulting from the run performed 
with the formula by Cenedese & Adduce 2010[2] (i.e. CA) 
is substantially overlapped to the ETzero curve. In fact CA 

provides low values of entrainment coefficient (i.e. E≅Min) 
for the range of Froude numbers investigated in the regime 
of interest (i.e. Fr<1).   
In order to define the ability of the model in simulating 
gravity currents, an error MPE (Mean Percentage Error) 
was computed in the following way: 
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where xnf and xef are the numerical and experimental front 
position, respectively. Table 2 shows the value of MPE for 

each run. As can be observed from Table 2 the best 
agreement with experimental data is obtained with ETm 
simulations: the mean error MPE reaches a maximum value 
of 4.30 % for Run 1 and a minimum value of 2.91 % for 
Run 2. Therefore the agreement between the results for the 
numerical and experimental front position is fairly good, 
being the error values reasonable for all the investigated 
slope’s angles.  
 

Table 2: Mean Percentage Error (MPE) for each run 
computed on the basis of Equation (13). 

RUN 
MPE [%] 

ETm ETzero CA 

1 4.30 6.53 6.43 
2 2.91 27.80 27.34 
3 3.21 37.34 36.83 
4 3.48 37.35 36.84 

 
 
Figure 4a-d show lower layer velocity V1 along x-axis at 
four different time steps after release for Run 2 performed 
on upsloping bed. The velocity values resulting from the 
simulation performed with the formula by Cenedese & 
Adduce 2010[2] (i.e. CA) are substantially overlapped to the 
ones predicted neglecting the entrainment term (i.e. 
ETzero). Although in Figure 4a-b the three different 
simulations show a similar general trend of V1, since the 
third considered time step (Figure 4c-d), V1 predicted by 
ETm simulation diverge from both the CA and ETzero 
simulations. As observed for figure 3a-d, neglecting the 
entrainment term affects numerical results only after the 
first stage of the gravity current’s development.   
Furthermore, numerical simulation performed by using the 
ETm formulation, shows near the lock an area in which the 
gravity current’s velocity is negative, i.e. the dense fluid is 
moving downslope.  
Figure 5 and Figure 6 show the comparison between 
images acquired by the camera and numerical profiles 
obtained with CA, Etm and ETzero simulations at four 
different time steps after release for Run 1 and Run 2, 
respectively. As explained in the previous section, the 
effect of mixing is to produce a mass flow from the lighter 
fluid to the heavier one, causing an increase of the height of 
the current’s profile and therefore a decrease of both the 
density and the velocity of the gravity current. Therefore, as 
can be observed in Figure 5 and Figure 6, both the 
numerical simulation obtained neglecting the entrainment 
term (i.e. ETzero) and the one performed by using 
Cenedese & Adduce’s formula (i.e. CA) provide a less high 
profile for the current. 



 

Figure 3a-d: Dimensionless plot of front’s position versus 
time for all the performed runs: experimental data (circle), 
CA (dash-dot line), ETm (black line), ETzero (grey line).  

 

 

Figure 4a-d: Plot of lower layer velocity V1 along x-axis at 
four different time steps for Run 2.  

 

Figure 5: Comparison between numerical simulations and 
images acquired by the camera at three different time steps 
after release for Run 1. 



 

Figure 6: Comparison between numerical simulations and 
images acquired by the camera at three different time steps 
after release for Run 2.  

Conclusions 

Four full depth lock exchange release experiments were 
performed to study gravity current’s dynamics: three of 
them on upsloping bed. Particle Image Velocimetry (PIV) 
was applied to measure the velocity field of the gravity 
currents. The main purpose is to test a mathematical model 
that uses a new formula, in order to take in account also the 
entrainment phenomenon. 
A good agreement between experimental data and the 
numerical front’s position predicted using Ellison & 
Turner’s formula (i.e. ETm) to model the entrainment can 
be observed. Regarding the runs performed on upsloping 
beds, the simulation performed without taking into account 
the entrainment term (ETzero and, de facto, CA) agrees 
with laboratory data only for the first stage of gravity 
current’s development.  
The velocity values resulting from the simulation 
performed with the formula CA are substantially 
overlapped to the ones predicted neglecting the entrainment 
term (i.e. ETzero). Numerical simulation performed by 
using the ETm formulation, shows near the lock an area in 
which the gravity current’s velocity is negative; moreover, 
velocity profiles show that the maximum velocity occurs 
about 5 cm behind the nose of the current. 
The numerical simulation obtained neglecting the 
entrainment term (i.e. ETzero) and the one performed by 
using Cenedese & Adduce’s formula (i.e. CA) provide a 
less high profile for the current, than using Ellison & 
Turner’s formula (i.e. ETm). 
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